A local $L^2$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A local L2-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems

— We consider the discretization of linear, nonstationary, convection-dominated, convection-diffusion Systems by the streamline diffusion finite element method and give local error estimâtes in the energy norm for both linear scalar équations in arbitrary dimensions and for Systems in one space dimension. For piecewise linear shape functions in time-space that are continuons in space and discon...

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Robust A Posteriori Error Estimates for Nonstationary Convection-Diffusion Equations

We consider discretizations of convection dominated nonstationary convectiondiffusion equations by A-stable θ-schemes in time and conforming finite elements in space on locally refined, isotropic meshes. For these discretizations we derive a residual a posteriori error estimator. The estimator yields upper bounds on the error which are global in space and time and lower bounds that are global i...

متن کامل

a posteriori $ l^2(l^2)$-error estimates with the new version of streamline diffusion method for the wave equation

in this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. we prove a posteriori $ l^2(l^2)$ and error estimates for this method under minimal regularity hypothesis. test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

The streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation

We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis

سال: 1995

ISSN: 0764-583X,1290-3841

DOI: 10.1051/m2an/1995290505771